
FLAMES Insight

Wuqiong Zhao

September 18, 2023

This document provides additional insights into the FLAMES (Flexible Linear Algebra
with Matrix-Empowered Synthesis) library for Vitis HLS [1]. The FLAMES library is open
source at https://github.com/autohdw/flames, and the C++ API documentation is avail-
able at https://flames.autohdw.com.

1 Coverage Comparisons With Armadillo

Though we employ the concept of class-based interfaces from Armadillo [2], the syntax
and coverage of FLAMES is not directly comparable with Armadillo.

1.1 Similarities and Differences

1.1.1 Similarities

1. Both the FLAMES library and the Armadillo library utilize modern C++ features in
their code implementation;

2. Both the FLAMES library and the Armadillo library primarily focus on constructing
classes and provide numerous member functions (methods) which significantly simplify
code and enhance readability;

3. FLAMES has implemented matrix basics in Armadillo, including classes, operators,
member functions, and other related matrix operations.

1.1.2 Differences

1. FLAMES is a C++ library for HLS implementation of hardware, while Armadillo is a
C++ library for software run on CPU;

2. Though FLAMES is written in C++, it must be synthesizable, i.e., supported by the
HLS tool (Vitis HLS [1]);

1

https://github.com/autohdw/flames
https://flames.autohdw.com

3. Writing HLS in C++ restricts the usage of class inheritance and virtual functions, and
there is a lack of return value optimization (RVO) in Vitis HLS;

4. FLAMES does not include functions that potentially require dynamic memory alloca-
tion, such as the sparse matrix class (SpMat), as dynamic memory can not be synthesized
by Vitis HLS.

1.2 HLS C++ Obstacles

Writing HLS in C++ is substantially different from C++ software programming with the
CPU target. These differences hinder any HLS library implementation to cover most of the
Armadillo library for software designs.

The library could have been more easily implemented with class inheritance and virtual
functions (especially for MatView), however, the synthesis support for virtual functions has
been removed in recent Vitis HLS releases. Another headache is the missing return value
optimization (RVO) in Vitis HLS, therefore, returning a Mat object will inevitably lead to an
unneeded copy process.

1.3 Coverage Comparisons

FLAMES has implemented almost all basics in Armadillo1, including classes, operators,
member functions, and other matrix operations. Nevertheless, FLAMES is still readily ex-
tendible and can work with existing algorithm implementations. The contents marked red in
the following tables are later added, thanks to the Reviewer.

Table 1 shows the basic class implementations. The sparse matrix class (SpMat) is not
implemented here, because it can potentially require dynamic memory (for example, change
the number of non-zero elements), which is not synthesizable. It is recommended that users
design the implementation to avoid use a sparse matrix representation. This feature may be
added in the future should users make a reasonable request.

1Documentation website: https://arma.sourceforge.net/docs.html.

2

https://arma.sourceforge.net/docs.html

Table. 1. Coverage comparisons of matrix, vector, cube classes.

Armadillo [2] FLAMES Remarks

Mat Mat Dense matrix class.

Col Col Dense column vector class.

Row Row Dense row vector class.

Cube Row Dense cube class.

SpMat N/A Sparse matrix class.

const Mat& MatView Read-only access to a matrix.

Mat& MatRef Writable reference to a matrix.

Table 2 shows the defined operators. It is worth noting that == and != are not used for
the matrix equality check. Additionally, we also provided the << operator to print the matrix
(only in C++ simulation, not used in synthesis).

Table. 2. Coverage comparisons of operators.

Armadillo [2] FLAMES Remarks

+ (Unary) + (Unary) Positive sign.

+ (Binary) + (Binary) Addition of two objects.

- (Unary) - (Unary) Negative sign.

- (Binary) - (Binary) Subtraction of two objects.

* * Matrix multiplication.

% % Matrix element-wise (Hadamard) multiplication.

/ / Matrix element-wise division.

== == Element-wise equality evaluation.

!= != Element-wise inequality evaluation.

>=, <=, >, < >=, <=, >, < Element-wise comparisons.

&&, || &&, || Element-wise And and Or logic.

3

Methods for main matrix member functions are shown in Table 3. Since FLAMES is for
hardware implementation, where dynamic memory allocation is not allowed, all operations
that modify the size of a matrix are not supported.

Table. 3. Coverage comparisons of main matrix member functions.

Armadillo [2] FLAMES Remarks

.zeros .setZero Set all elements to zero.

.fill .setValue Set all elements to a specified value.

.memptr .rawDataPtr Raw pointer to memory.

[] [] Access an element (viewed on 1D).

(,) (,) Access an element (viewed on 2D).

.col .col/.col Column (as a copy/view).

.cols .cols/.cols Columns (as a copy/view).

.row .row/.row Row (as a copy/view).

.rows .rows/.rows Rows (as a copy/view).

.t .t/.t Transpose (as a copy/view).

.i .invNSA Matrix inverse (NSA is hardware friendly)2.

.diagvec .diagVec Take the diagonal and return a vector.

.diagmat .diagMat Generate a diagonal matrix.

.norm(,"fro") .power Power of a matrix (square of ℓ2-norm).

.print .print Print the matrix (not for synthesis).

Basic matrix operations, including mul, add, sub, innerProd are also supported by
FLAMES.

FLAMES does not currently cover other functions, including decomposition, factorization,
and statics. However, an interface to existing algorithm IPs can be easily implemented, by
getting the raw data pointer with the .rawDataPtr method.

2 FLAMES Simplicity

2.1 Code Length Comparisons

We use a design methodology for general-purpose DSP as a baseline [3] (the HLS book:
https://kastner.ucsd.edu/hlsbook/) and compare it with our code implementation using
the FLAMES library. There is a mapping relationship between the design methodology in
the reference and our baseline (implementations of operations, e.g., matrix multiplication,

4

https://kastner.ucsd.edu/hlsbook/

and addition, can be found in [3]). It is worth noting that through our comparison, achieving
the same hardware efficiency and performance as the FLAMES library often requires longer
code implementation in the baseline approach.

2.1.1 Matrix-Vector Multiplication

For multiplication between matrix A and vector b, with the result as c, FLAMES has
shorter code than the traditional HLS [3]. This example can also be accessed at https:

//github.com/autohdw/flames/tree/master/examples/mat-vec-multiplication.

With FLAMES.

1 void top(const M& A, const V& b, V& c) { c = A * b; }

Without FLAMES. [3]

1 void top(dtype A[4][4] , dtype b[4], dtype c[4]) {

2 #pragma HLS ARRAY_PARTITION variable = A complete

3 #pragma HLS ARRAY_PARTITION variable = b complete

4 for (size_t i = 0; i != 4; ++i) {

5 for (size_t j = 0; j != 4; ++j) {

6 #pragma HLS UNROLL

7 c[i] = A[i][j] * b[j];

8 }

9 }

10 }

2.1.2 Neumann Series Approximation (NSA) Inverse

This example can also be accessed at https://github.com/autohdw/flames/tree/master/
examples/mat-inv-nsa.

FLAMES provides a built-in Neumann series approximation (NSA) inversion function
.invNSA().

With FLAMES.

1 #include "flames/flames.hpp"

2

3 using dtype = FxP <8, 8>;

4 using M = Mat <dtype , 4, 4>;

5

6 M top(const M& A) { return A.invNSA (); }

7

8 int main() {

9 M A{ 10, -2, 1, 0, 1, -8, 2, 0, 0, 0, 11, -1, 0, 1, 2, 4 };

10 A.print("A = ");

11 M A_inv = top(A);

5

https://github.com/autohdw/flames/tree/master/examples/mat-vec-multiplication
https://github.com/autohdw/flames/tree/master/examples/mat-vec-multiplication
https://github.com/autohdw/flames/tree/master/examples/mat-inv-nsa
https://github.com/autohdw/flames/tree/master/examples/mat-inv-nsa

12 A_inv.print("A_inv = ");

13 return 0;

14 }

Even without using the .invNSA() function, the implementation of the algorithm can be
done with only a few lines of code.

With FLAMES but not directly use .invNSA().

1 #include "flames/flames.hpp"

2

3 using dtype = FxP <8, 8>;

4 using M = Mat <dtype , 4, 4>;

5

6 M top(const M& A) {

7 M A_inv;

8 const auto D = A.diagMat_ (); // diagonal part

9 const auto E = A.offDiag_ (); // off -diagonal part

10 Mat <dtype , 4, 4, MatType ::DIAGONAL > D_inv;

11 D_inv.invDiag(D); // inverse of diagonal part

12 Mat <dtype , 4, 4, MatType ::NORMAL > product = (-D_inv) * E;

13 Mat <dtype , 4, 4, MatType ::NORMAL > sum_tmp = A_inv = product; // the first

↪→ iteration

14 Mat <dtype , 4, 4, MatType ::NORMAL > tmp;

15 const size_t iter = 4;

16 MAT_INV_NSA:

17 for (size_t i = 1; i < iter; ++i) {

18 tmp.mul(A_inv , product);

19 A_inv = tmp;

20 sum_tmp += tmp;

21 }

22 A_inv.mul(sum_tmp , D_inv);

23 return A_inv += D_inv;

24 }

25

26 int main() {

27 M A{ 10, -2, 1, 0, 1, -8, 2, 0, 0, 0, 11, -1, 0, 1, 2, 4 };

28 A.print("A = ");

29 M A_inv = top(A);

30 A_inv.print("A_inv = ");

31 return 0;

32 }

Directly using built-in functions provided by Vitis HLS [1] and the design method in [3]
without FLAMES, the required code is much longer, and the readability is much poorer.

Without FLAMES.

1 #include "ap_fixed.h"

2 #include <iostream >

3 #include <string >

6

4

5 using dtype = ap_fixed <17, 8>;

6

7 void print(dtype A[4][4] , std:: string s = "") {

8 #ifndef __SYNTHESIS__

9 std::cout << s << "[";

10 for (size_t i = 0; i + 1 < 4; ++i) {

11 std::cout << "[";

12 for (size_t j = 0; j + 1 < 4; ++j) std::cout << A[i][j] << ", ";

13 std::cout << A[i][3] << "]," << std::endl;

14 }

15 std::cout << "[";

16 for (size_t j = 0; j + 1 < 4; ++j) std::cout << A[3][j] << ", ";

17 std::cout << A[3][3] << "]]" << std::endl;

18 #endif

19 }

20

21 void mat_copy(dtype from [4][4] , dtype to [4][4]) {

22 #pragma HLS INLINE

23 #pragma HLS ARRAY_PARTITION variable = from complete

24 #pragma HLS ARRAY_PARTITION variable = to complete

25 for (size_t i = 0; i != 4; ++i) {

26 #pragma HLS UNROLL

27 for (size_t j = 0; j != 4; ++j) {

28 #pragma HLS LOOP_FLATTEN

29 to[i][j] = from[i][j];

30 }

31 }

32 }

33

34 void top(dtype A[4][4] , dtype A_inv [4][4]) {

35 #pragma HLS ARRAY_PARTITION variable = A complete

36 #pragma HLS ARRAY_PARTITION variable = A_inv complete

37 dtype product [4][4];

38 dtype D_inv [4];

39 for (size_t i = 0; i != 4; ++i) {

40 #pragma HLS UNROLL

41 D_inv[i] = static_cast <dtype >(1) / A[i][i];

42 }

43 MAT_DIAG_TIMES_MAT_NORMAL:

44 for (size_t j = 0; j != 4; ++j) {

45 #pragma HLS UNROLL

46 for (size_t i = 0; i != 4; ++i) {

47 #pragma HLS LOOP_FLATTEN

48 product[i][j] = i == j ? static_cast <dtype >(0) :

↪→ static_cast <dtype >(-D_inv[i] * A[i][j]);

49 }

50 }

51 dtype sum_tmp [4][4] , tmp [4][4];

52 mat_copy(product , sum_tmp);

7

53 mat_copy(product , A_inv);

54 const size_t iter = 4;

55 for (size_t i = 1; i < iter; ++i) {

56 // tmp = A_inv * product;

57 GEMM:

58 for (size_t _i = 0; _i != 4; ++_i) {

59 GEMM_r:

60 for (size_t r = 0; r != 4; ++r) {

61 #pragma HLS UNROLL

62 GEMM_c:

63 for (size_t c = 0; c != 4; ++c) {

64 #pragma HLS LOOP_FLATTEN

65 if (_i == 0) tmp[r][c] = static_cast <dtype >(0);

66 tmp[r][c] += A_inv[r][_i] * product[_i][c];

67 }

68 }

69 }

70 mat_copy(tmp , A_inv);

71 // sum_tmp += tmp;

72 for (size_t _i = 0; _i != 4; ++_i) {

73 #pragma HLS UNROLL

74 for (size_t j = 0; j != 4; ++j) {

75 #pragma HLS LOOP_FLATTEN

76 sum_tmp[_i][j] += tmp[_i][j];

77 }

78 }

79 }

80 // A_inv = sum_tmp * D_inv;

81 MAT_NORMAL_TIMES_MAT_DIAG:

82 for (size_t i = 0; i != 4; ++i) {

83 #pragma HLS UNROLL

84 for (size_t j = 0; j != 4; ++j) {

85 #pragma HLS LOOP_FLATTEN

86 A_inv[i][j] = sum_tmp[i][j] * D_inv[j];

87 }

88 }

89 // A_inv += D_inv;

90 for (size_t i = 0; i != 4; ++i) {

91 #pragma HLS UNROLL

92 A_inv[i][i] += D_inv[i];

93 }

94 }

95

96 int main() {

97 dtype A[4][4] = { { 10, -2, 1, 0 }, { 1, -8, 2, 0 }, { 0, 0, 11, -1 }, {

↪→ 0, 1, 2, 4 } };

98 print(A, "A = ");

99 dtype A_inv [4][4];

100 top(A, A_inv);

101 print(A_inv , "A_inv = ");

8

102 return 0;

103 }

2.2 Simplicity Beyond Code Length

Writing HLS C++ code with FLAMES enhances code readability by providing modular
and reusable components. FLAMES encapsulate complex functionalities into pre-built func-
tions, allowing designers to focus on higher-level logic and abstraction. This makes the code
better organized, and less redundant. It also facilitates code maintainability by making
the code easier to comprehend and modify.

3 Task-Level Pipelining

Designs can leverage task-level pipelining with FLAMES. Auto pipelining is applied in
the case study by HLS.

Since the task-level pipelining optimization is provided by the HLS tool (Vitis HLS, for
example), there is no significant difference between using FLAMES or not in this term. If
anything, FLAMES provides a clearer task flow, where common matrix operations are opti-
mized and managed, which is conducive to task-level pipelining. For instance, the (false) data
dependency issue can be avoided by using FLAMES.

To demonstrate the availability of task-level pipelining optimization, an additional example
is provided here, which can also be accessed at https://github.com/autohdw/flames/tree/
master/examples/task-level-pipelining. In this example, main task can be pipelined by
HLS. It is worth noting that the function main task needs to be marked as an INLINE function
so as to achieve a good pipeline result. The schedule viewer for the top function provided by
Vitis HLS 2022.2 is shown in Fig. 1.

1 #include "flames/flames.hpp"

2

3 using dtype = FxP <6, 2>;

4 using M = Mat <dtype , 4, 4>;

5 using V = Vec <dtype , 4>;

6

7 void main_task(const M& A, const V& b, V& c) {

8 #pragma HLS INLINE

9 M tmp1;

10 V tmp2;

11 tmp1 = A * A;

12 tmp2 = tmp1 * b;

13 c = tmp2 % tmp2;

14 }

15

16 void top(const M& A1, const M& A2, const M& A3, const V& b, V& c) {

17 V c1, c2;

9

https://github.com/autohdw/flames/tree/master/examples/task-level-pipelining
https://github.com/autohdw/flames/tree/master/examples/task-level-pipelining

18 M tmp;

19 #pragma HLS PIPELINE

20 main_task(A1 , b, c1);

21 main_task(A2 , c1 , c2);

22 main_task(A3 , c2 , c);

23 }

24

25 int main() {

26 M A1, A2, A3;

27 V b, c;

28 top(A1 , A2 , A3 , b, c);

29 return 0;

30 }

Fig. 1. Task-level pipelining result shown in the schedule viewer.

References

[1] Xilinx, “Vitis high-level synthesis user guide (UG1399),” Accessed: Feb. 27, 2023, 2023.
[Online]. Available: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls.

[2] C. Sanderson and R. Curtin, “Armadillo: A template-based C++ library for linear alge-
bra,” J. Open Source Softw., vol. 1, no. 2, p. 26, 2016.

[3] R. Kastner, J. Matai, and S. Neuendorffer, “Parallel programming for FPGAs,” arXiv:1805.03648,
2018. [Online]. Available: https://arxiv.org/abs/1805.03648.

10

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://arxiv.org/abs/1805.03648

	Coverage Comparisons With Armadillo
	Similarities and Differences
	Similarities
	Differences

	HLS C++ Obstacles
	Coverage Comparisons

	FLAMES Simplicity
	Code Length Comparisons
	Matrix-Vector Multiplication
	Neumann Series Approximation (NSA) Inverse

	Simplicity Beyond Code Length

	Task-Level Pipelining

